FxEngine 0.3

- a 3d engine using the 3dfx chipsets to it's limits by Andreas Ingo

and contributors

Chapter 1 - Read this first

Chapter 2 - Purpose

Chapter 3 - FxEngine fundamentals

	

	3.1 OverView

	3.2 How to build FxEngine applications

	3.3 Datatypes

	3.4 Functions

	

Chapter 4 - FxEngine API Reference

	

	4.1 fxeGetVersion

	4.2 fxeInitialize

	4.3 fxeShutdown

	4.4 fxeCameraMove

	4.5 fxeCameraRotate

	4.6 fxeLightsourceAdd

	4.7 fxeLightsourceLight

	4.8 fxeLightsourceMove

	4.9 fxeLightsourceDelete

	4.10 fxeTextureLoad

	4.11 fxeTextureDelete

	4.12 fxeObjectAdd

	4.13 fxeObjectLoad

	4.14 fxeObjectMove

	4.15 fxeObjectRotate

	4.16 fxeObjectScale

	4.17 fxeObjectDelete

	4.18 fxeWorldRender

	4.19 fxeAmbientlightLight

	4.20 fxeCreateCylinder

	4.21 fxeWorldDisplay

	4.22 fxeFogSetMode

	4.23 fxeFogSetColor

	4.24 fxeLandscapeCreate64x64

	4.25 fxeLandscapeAddToWorld

	4.26 fxeBackgroundSetColor

	

Chapter 5 - FxEngine demonstration programs

	5.1 FxeTest

	5.2 FxeWinTest

Chapter 6 - The sourcecode

Chapter 7 - Contacting the author

Chapter 8 - List of contributors

Chapter 1 - Read this first

	FxEngine is a 3d Engine with sourcecode developed by Andreas Ingo, matrix functions used internally is using matrix functions by Hugues Landry. The first contributor!

	

	This document assumes you know the C language and have some experience in 3d programming. If you don't have this knowledge I really recommends a great book: The Black Art of 3d Programming. It's the best book in the topic I have found.	

	Everything in this document describes version 0.3 of FxEngine and please note that the FxEngine API

can change in later versions of FxEngine so this document will by no means cover future versions of FxEngine API.

	FxEngine isn't really freeware but you can use it for free and modify it as you want but you can't call it FxEngine. You can (and are encouraged to) send in your sourcecode to the author and only the author can call the software FxEngine. If you want to change something in FxEngine you can do this. Send in your contributions with e-mail to andreas.ingo@swipnet.se. All contributors that have written code that becomes part of FxEngine (only the author decides what's going to be part of FxEngine) will be mentioned in future versions of this document.

Chapter 2 - Purpose

	FxEngine is here for you, I hope it will be a good resource to learn from with sourcecode available to the public, the purpose is that we all is going to learn something from it, improving it along the way, it is in no way a commercial project. FxEngine is available for download from the 3dfx Programming Secrets website at

http://welcome.to/3dfxPS and it's completely free to download. Infact FxEngine is just a subproject for the 3dfx Programming Secrets website, a project that the readers of that site can learn from.

Chapter 3 - FxEngine fundamentals

3.1 - Overview

	FxEngine consists of a library of callable functions with C interface which means you have to have a C compiler to use it. FxEngine is currently built upon GLIDE, a API developed by 3dfx interactive and only works on chipsets compatible with GLIDE such as voodoo and voodoo2. FxEngine doesn't currently work on voodoo rush but will probably be supported. Voodoo Banchee is a new chip and it will probably work with this chip too as it is compatible with GLIDE but I haven't tested FxEngine on this chip. This means that FxEngine is pure hardware accelerated. In the future maybe other chipsets will be supported but for this version only GLIDE compatible hardware is supported.

A software version of FxEngine is not planned as FxEngine uses Z buffering, Transparency, Trilinear filtered texture mapping, RGB light, Gouraud shading, Fogging and much more at the same time which means that software just can't do it fast enough on todays processors! (60+ FPS)

3.2 - How to build FxEngine applications

	When you want to built FxEngine applications you need to link with the fxengine.lib file. The FxEngine

functions is declared in various header files (h-files). To use FxEngine's functions and structures you need to include the FxEngine.h file. The FxObject.h file have declared several functions to build objects which can be used by FxEngine. It is not part of FxEngine itself but builds objects which can be used by FxEngine. 	

If you want to create landscapes which can be rendered by FxEngine you also need to include the FxLandscape.h file.

	As FxEngine uses GLIDE SDK so you also need to link glide2x.lib to your executable. You can download GLIDE SDK from 3dfx Interactives homepage at

http://www.3dfx.com.

3.3 - Datatypes

	FxEngine uses various datatypes such as fxePolygon, fxeObject, fxeLightsource that represents various things. For example the fxePolygon datatype represents a polygon in the way it's defined by FxEngine.

This section is to be updated with detailed information but I'm out of time...

3.4 - Functions

	All functions in FxEngine starts with the fxe prefix which stands for FXEngine. This is to distinguish FxEngine functions from other and to make some sort of standard for FxEngine. After the fxe prefix comes a descriptive name of the function. The function name tells us what object basis the function works on. For example functions that operates on objects is called fxeObjectX where X is the name of the operation on the object. X can for example be Rotate or Move.

	

	Many of the FxEngine functions uses handles to objects. For example when you shall move a object you need a handle to the object to move along with the objects new position and when you shall change the properties of a light source you need to pass a handle to the lightsource to change to the function.

Chapter 4 - FxEngine API reference

	All functions and dataypes mentioned in this API reference is declared in the fxengine.h or fxobject.h file and the implementation of the functions can be found in the fxengine.lib or fxobject.lib file. If you want examples on how to use

FxEngine then check out the demonstration programs that is sent with FxEngine.

4.1 fxeGetVersion

Description:

	

	As FxEngine is currently under heavily development the API will change on the way and if you are 	doing applications using FxEngine you only have one safe way to get to know which version of the API 	you are using and that is calling the fxeGetVersion function. You should call this function to be sure 	that your application that is written for a specific version of FxEngine really have linked to this version 	of FxEngine.

Declaration:

	

	void fxeGetVersion(int *MainVersion, int *UnderVersion);

Parameters:

	

	Mainversion is a pointer to a integer that will be filled in with the mainversion number of FxEngine.

	UnderVersion is a pointer to a interger that will be filled in with the underversion number of FxEngine.

Returns:

	Nothing.

4.2 fxeInitialize

Description:

	

	This function needs to be called before any function in FxEngine except fxeGetVersion. It initializes 	data used by FxEngine and sets 3dfx videomode.

Declaration:

	

	int fxeInitialize(fxeDetailLevel DetailLevel);

Parameters:

	

	DetailLevel is of type fxeDetailLevel and can be assigned with one of the following values defined in 	fxengine.h:

	LOW_DETAIL

	Specifies that FxEngine will use bilinear filtered textures and 640x480 as resolution. This setting works 	on voodoo/voodoo2 and probably on voodoo banshee.

	HIGH_DETAIL

	Specifies that FxEngine will use trilinear filtered textures and 800x600 as resolution. This setting works 	only on a voodoo2 card.

	MAXIMUM_DETAIL

	Specifies that FxEngine will use trilinear filtered textures and 1024x768 as resolution. This setting 	works only

	with two voodoo2 cards connected with a SLI cable.

	AUTOMATIC_DETAIL

	This setting chooses the best setting for the current hardware. This setting works on voodoo/voodoo2. 	On a voodoo LOW_DETAIL is choosed. On a voodoo2 HIGH_DETAIL is choosed and on two voodoo2 	cards connected with a SLI cable MAXIMUM_DETAIL is choosed.

Returns:

	fxeInitialize returns a integer which can be FXETRUE or FXEFALSE. If fxeInitialize returned 	FXETRUE then it was succesful. If fxeInitialize returned FXEFALSE fxeInitialize failed and calling 	other functions in FxEngine will not work properly.

4.3 fxeShutdown

Description:

	

	fxeShutdown should be called when your application decides not to call any functions in FxEngine 	anymore. It frees memory used by FxEngine and restores the videomode back from 3dfx videomode. 	When this function have been called any other function in FxEngine except fxeInitialize and 	fxeGetVersion should not be called. fxeShutdown is typically called when your application exits and 	returns back to windows.

Declaration:

	

	void fxeShutdown(void);

Parameters:

	None.

Returns:

	

	Nothing.

4.4 fxeCameraMove

Description:

	Moves the camera (viewpoint) in the world to a specified position. This function is used to move around 	in the world.

Declaration:

	void fxeCameraMove(float x, float y, float z);

Parameters:

	The x,y and z arguments are float values and specifies where in the world the new camera position 	shall be. The arguments must be in the range of -65535..65535.

Returns:

	Nothing.

4.5 fxeCameraRotate

Description:

	Rotates the camera to a specific angle. This function is used to "look" in any direction in the world.

	

Declaration:

	

	void fxeCameraRotate(float xa, float ya, float za);

	

Parameters:

	The xa, ya and za parameters specifies the rotation angles of the camera rotation. The xa parameter 	specifies the rotation angle around the x axis, the ya parameter specifies the rotation angle around the

	y axis and the za parameter specifies the rotation angle around the z angle. The parameters must be in

	the range of 0..359.

Returns:

	Nothing.

4.6 fxeLightsourceAdd

Description:

		

	Creates a new point lightsource with specific parameters. This function is used to light your objects, to 	be able to light your objects from special directions you need this function.

Declaration:

	fxeLightsourceHandle fxeLightsourceAdd(float r, float g, float b, float x, float y, float z);

Parameters:

	The r,g, and b parameters specifies the RGB components of the lightsource. A lightsource can have 	different R, G and B values which make true RGB lightning possible. The r,g and b parameters must be 	in the range of 0..256.

	The x,y and z parameters specifies the position of the lightsource in the world in the world.

	The x,y and z parameters must be in the range of -65535..65535.

Returns:

	

	The function returns a fxeLightsourceHandle which is a handle to a lightsource. When you need to use 	your new lightsource in other lightsource related functions you need this handle.

4.7 fxeLightsourceLight

Description:

	This function sets the R,G,B components of a specific lightsource.

Declaration:

	

	void fxeLightsourceLight(fxeLightsourceHandle LightsourceHandle, float r, float g, float b);

Parameters:

	LightsourceHandle is a handle to a lightsource. The lightsource with the handle LightsourceHandle is

	affected by the function.

	The r,g,b parameters specifies the R,G,B components of the Lightsource. The r,g,b parameters must be

	in the range of 0.256.

Returns:

	Nothing.

4.8 fxeLightsourceMove

Description:

	This function moves a specific lightsource to a specific position in the world.

Declaration:

	void fxeLightsourceMove(fxeLightsourceHandle LightsourceHandle, float x, float y, float z);

Parameters:

	LightsourceHandle is a handle to a lightsource. The lightsource with the handle LightsourceHandle is

	affected by the function.

	The x,y,z parameters specifies the position of the Lightsource in the world.

	The x,y,z parameters must be in the range of -65535..65535.

	

Returns:

	Nothing.

4.9 fxeLightsourceDelete

Description:

	Deletes a specific lightsource from the world. When a lightsource have been deleted it's handle is 	unusable.

Declaration:

	void fxeLightsourceDelete(fxeLightsourceHandle LightsourceHandle);

Parameters:

	Lightsourcehandle is a handle to a lightsource. The lightsource with handle LightsourceHandle is

	deleted from the world and can't be used anymore.

Returns:

	

	Nothing.

4.10 fxeTextureLoad

Description:

	Loads a texture from a 3df file. 3df files can be created from truevision targa files (tga files) with 	the texus sent with the GLIDE SDK. The texture loaded is used to texturemap specific polygons in the world.

	

Declaration:

	fxeTextureHandle fxeTextureLoad(char *Filename);

Parameters:

	Filename is a pointer to a NULL terminated string that specifies the filename of the 3df texture file.

Returns:

	

	fxeTextureLoad returns a handle to a texture. This handle can be used in a fxePolygon structure 	in the datamember TextureHandle

	in conjunction with setting the TexMode datamember of the fxePolygon structure to

	TEXTURE_MAPPED. This will texture map the polygon with the texture you loaded with

	this function. If the returnvalue isn't NULL it's a valid handle. If the returnvalue is NULL the function

	failed (most often because the function couldn't find the file).

4.11 fxeTextureDelete

Description:

	This function deletes a specific texture. When the texture have been deleted it's unusable.

Declaration:

	void fxeTextureDelete(fxeTextureHandle TextureHandle);

Parameters:

	

	TextureHandle is a handle to a texture that will be deleted.

Returns:

	Nothing.

4.12 fxeObjectAdd

Description:

	Adds a object to the world, after the object have been added to the world it's rendered if it's in the 	viewing volume.

Declaration:

	fxeObjectHandle fxeObjectAdd(fxeObject *Object);

Parameters:

	Object is a pointer to a fxeObject structure that is going to be added to the world. fxeObject is a 	structure declared in fxengine.h. It has several datamembers that need to be initialized properly before 	fxeObjectAdd is called, the datamembers that need to be initialized is explained here:

	PolygonList

 A pointer to a list of fxePolygon structures. This polygonlist is the polygons that the object is built of.

	Every polygon structure in the polygon list needs to be correctly set up. For this information

	refer to the datatype section of FxEngine API reference.

	VertexList

	A pointer to a list of fxeVertex structures. This vertexlist is used to build up the polygons in the

	polygonlist. Every polygon in the object uses indices into this vertexlist to get the vertices that

	builds up the polygon.

	VerticesWorld

	This is a pointer to a list of fxeInternalVertex structures. The fxeInternalVertex structures doesn't need

 to be initialized but they need to be allocated memory for or else FxEngine will crash.

	VerticesCamera

	This is a pointer to a list of fxeInternalVertex structures. The fxeInternalVertex structures doesn't need

 to be initialized but they need to be allocated memory for or else FxEngine will crash.

	x,y,z	

	Three floating point values that specifies the position of the object in the world.

	Radius

	A floating point value that specfies the maximum radius of the object. This variable is used to check if 	the object is outside the viewing volume.

	NumPolys

	A integer that specifies the number of polygons the object consists of.

	NumVertices

	A integer that specifies the number of vertices the object consists of.

Returns:

	This function returns a handle to a object. This handle can be used in calls to other object related 	functions.

4.13 fxeObjectLoad - (Not available in version 0.3 of FxEngine)

Description:

	This function loads a object in the 3de format from disk and positions it in the center of the world 	(0,0,0). The 3de format is specific for FxEngine

	and such a file can be created with the 3de utlity which is shipped with FxEngine.

Declararation:

	fxeObjectHandle fxeObjectLoad(char *Filename);

Parameters:

	Filename is a pointer to a NULL terminated string that specifies the filename of the 3de object file to be 	loaded.

Returns:

	This function returns a handle to a object. This handle can be used in calls to other object related 	functions.

4.14 fxeObjectMove

Description:

	This function moves a object to a specific position in the world.

Declaration:

	void fxeObjectMove(fxeObjectHandle ObjectHandle, float x, float, y, float z);

Parameters:

	

	ObjectHandle is a handle to object which is going to be moved.

	X,y and z is values defining the new position of the object in the world.

	X,y and z must be in the range of -65535..65535.

Returns:

	Nothing.

4.15 fxeObjectRotate

Description:

	This function rotates a object around it's X,Y and Z axis.

Declaration:

	void fxeObjectRotate(fxeObjectHandle ObjectHandle, float xa, float ya, float za);

Parameters:

	ObjectHandle is a handle to the object to be rotated.

	Xa, ya and za is the rotation angles. Xa specifies the amount of rotation around the x axis,

	ya specifies the amount of rotation around the y axis and za specifies the amount of rotation around the 	z axis. Xa, ya and za must be in the range of 0..359.

Returns:

	Nothing.

4.16 fxeObjectScale

Description:

	Scales a object with a scaling factor, the function assumes that the object is centered around its local

	coordinate system. This function is used to change the size of a object.

Declaration:

	void fxeObjectScale(fxeObjectHandle ObjectHandle, float SFactor);

Parameters:

	ObjectHandle is a handle to a object that will be scaled by a scaling factor.

	SFactor is the scaling factor that the object will be scales with. A scaling factor of 1.0 performs no 	scaling and a scaling factor of 2.0 makes the object 100% larger. You can specify scaling factors

	less than 1.0 to, if you do the object will shrink.	

Returns:

	Nothing.

4.17 fxeObjectDelete

Description:

	Deletes a specific object. When the object have been deleted it is unusable.

Declaration:

	void fxeObjectDelete(fxeObjectHandle ObjectHandle);

Parameters:

	ObjectHandle is a handle to a object that will be deleted.

Returns:

	Nothing.

4.18 fxeWorldRender

Description:

	This function is HUGE and renders the whole world. Almost whole FxEngine is built around this 	function. It renders object that's in the viewing volume

	(the enviroment seen by the camera).

Declaration:

	void fxeWorldRender(int DisplayWorld);

Parameters:

	DisplayWorld determines if the rendered world should be displayed on the screen or not. If the world

	is to be displayed on screen then set set DisplayWorld to FXETRUE, else to FXEFALSE.

Returns:

	Nothing.

4.19 fxeAmbientlightLight

Description:

	This function sets the ambient (overall) light level in the world. The default is no ambient light.

Declaration:

	void fxeAmbientlightLight(float r, float g, float b);

Parameters:

	The r,g and b parameters specify the R,G and B components of the ambient lightsource. The r,g and b 	parameters must be in the range of 0..255.

Returns:

	Nothing.

4.20 fxeCreateCylinder

Description:

	This function creates a cylinder object. The cylinder object have various parameters as radius, height, 	shading method and so on.

Declaration:

	fxeObject *fxeCreateCylinder(float Radius, float Height, int NumPolygons,

	 fxeTextureHandle TextureHandle, int ShadingType, int TextureMode, int Transparent,

 	 unsigned char AlphaLevel, fxeColor ConstantColor);

Parameters:

	

	Radius is the radius of the cylinder object.

	Height is the height of the cylinder object.

	NumPolygons is how many polygons that makes up the cylinder object, many polygons (25 or more),

	makes the cylinder object look very realistic but takes a large amount a processing time but a

	cylinder with around 10 polygons doesn't look very realistic but is faster to process.

	TextureHandle is a handle to a texture. (Probably loaded by the fxeTextureLoad function)

	This texture handle is only used when the TextureMode parameter is not NOT_TEXTURED.

	ShadingType is the kind of shading that the cylinder object uses. It can currently only be

	GOURAUD_SHADED but other shading types such as FLAT_SHADING will be supported in later 	versions of FxEngine.

	

	TextureMode is the texture mode that this object uses. Texturemode can currently be set to three

	different values. When the TextureMode parameter is set to NON_TEXTURED the object doesn't

	use texture mapping. When the TextureMode parameter is set to TEXTURE_MAPPED the object

	is texture mapped and when the TextureMode parameter is set to ENVIROMENT_MAPPED the

	object is enviroment mapped. The texture used for texture or enviromental mapping is specified in the

	TextureHandle parameter. Currently the enviroment mapping isn't recommended as it doesn't work

	properly.

	Transparent is a integer that can have two values: FXETRUE or FXEFALSE. When this parameter is set 	to FXETRUE the object is transparent, the amount of transparency it will have is specified in the 	AlphaLevel parameter. If this parameter is set to FXEFALSE the object doesn't use transparency.

	Currently transparency isn't supported by FxEngine so this parameter is ignored.

	AlphaLevel specifies the amount of transparency the object will have. AlphaLevel is is the range of 	0..255 and 0 specifies no transparency and 255 full transparency. This parameter is only used when

	the Transparent parameter is set to FXETRUE. Currently transparency isn't supported by FxEngine

	so this parameter is ignored.

	ConstantColor is a fxeColor structure that specifies a color of the object if FLAT_SHADING is used in

	the ShadingType parameter. Flat shading is currently not supported by FxEngine so this parameter is

	ignored.

Returns:

	The functions returns a pointer to a object. This pointer can be used to add the object to the world using 	the fxeObjectAdd function.

4.21 fxeWorldDisplay

Description:

	Displays a world on the screen if it wasn't already displayed using the fxeRenderWorld function setting

	the DisplayWorld parameter to FXETRUE.

Declaration:

	void fxeWorldDisplay(void);

Parameters:

	None.

Returns:

	Nothing.

4.22 fxeFogSetMode

Description:

	Sets the fogging mode of FxEngine.

Declaration:

	void fxeFogSetMode(int FogMode);

Parameters:

	FogMode specifies the fogging mode FxEngine will be set to. Currently available modes are

	NO_FOGGING and DISTANCE_FOGGING.

	If NO_FOGGING is specified no fogging is used at all. If DISTANCE_FOGGING is used your

 	objects will face away in a specified fogging color as they are moved away from the camera. 	

	The fogging color the objects will fade away with a specified with the fxeFogSetColor function.

Returns:

	Nothing.

4.23 fxeFogSetColor

Description:

	Sets the color of the fog used when DISTANCE_FOGGING is specified using the fxeFogSetMode 	function.

Declaration:

	void fxeFogSetColor(fxeColor *FogColor);

Parameters:

	FogColor is a pointer to a fxeColor structure that specifies the color used with DISTANCE_FOGGING.

Returns:

	Nothing.

4.24 fxeLandscapeCreate64x64

Description:

	

	Creates a landscape with 64x64 hightlevels. A heightlevel is the y position of a point relative to the

	origin of the world. A landscape with 64x64 heightlevels is built of 64x64x2 polygons.

	This function creates a landscape with random heightlevels. You can specify the material of the surface

	by specifying a fxeTextureHandle. The landscape created is centered at the origin of the world.

Declaration:

	fxeLandscapeHandle fxeLandscapeCreate64x64(float Width, float Depth, fxeTextureHandle 		TerrainTexture, int RandomSeed);

Parameters:

	

	Width is the Width of the Landscape in world coordinates. Depth is the Depth of the world in

	world coordinates.

	

	TerrainTexture is a handle to a texture that is used as the material of the surface of the landscape.

	To get this texture handle, use the fxeTextureLoad function.

	RandomSeed is a integer that is used to create the random landscape. Different shapes of the landscape

	is used when different values if the RandomSeed parameter is sent to the function.

Returns:

	Returns a handle to a landscape. This handle can be used by the fxeLandscapeAddToWorld function 	which adds a landscape to the world. When fxeWorldRender is called the landscape created by

	fxeLandscapeCreate64x64 will be rendered.

4.25 fxeLandscapeAddToWorld

Description:

	

	Adds a landscape to the world.

Declaration:

	void fxeLandscapeAddToWorld(fxeLandscapeHandle pLandscape);

Parameters:

	pLandscape is a handle to a landscape that will be added to the world.

Returns:

	Nothing.

4.26 fxeBackgroundSetColor

Description:

	Sets the color of the background of the rendered scene.

Declaration:

	void fxeBackgroundSetColor(fxeColor* pColor);

Parameters:

	pColor is a pointer to a fxeColor structure that specifies the color of the Background.

Returns:

	Nothing.

Chapter 5 - Demonstration programs

	To get started quickly coding applications for FxEngine, you have two sample programs showing of

the capabilities of FxEngine.

5.1 FxeTest

FxeTest is a win32 console program that demonstrates FxEngines lightning, transformation and texture

mapping capabilities. You can find the sourcecode to FxeTest in the fxetest.c file and it's executable in the

fxetest.exe file.

5.2 FxeWinTest

FxeWinTest is a win32 windowed program that demonstrates FxEngines lightning, transformation and texture

mapping capabilities. It have also camera support, you can move around in the universe. You can find the

sourcecode to FxeWinTest in the fxewintest.c file and it's executable in the fxewintest.exe file.

FxeWinTest also uses MIDAS sound system for SFX and now includes landscape rendering. I have put

together all features of FxEngine to demonstrate it's features. To build FxeWinTest.exe you need to link with

glide2x.lib and midas11.lib. As midas11.lib and glide2x.lib is quite big I recommends that you downloads these

files from the separately. midas11.lib is the MIDAS 1.11 library. You can download it from the Internet.

If you don't want or need music you can delele all midas calls in fxewintest. They begins with MIDAS.

Chapter 6 - The sourcecode

	The sourcecode of FxEngine can be found in the fxengine.c file that was shipped with FxEngine.

fxengine.lib have been successfully built with the LccWin32 free C compiler but FxEngine should be ported easily to any compiler system out there.

Chapter 7 - Contacting the author

The author can be contacted by e-mail at andreas.ingo@swipnet.se. You can also contact him with ICQ,

his number is 13177481. You shall of course also visit the homepage at http://welcome.to/3dfxPS

Chapter 8 - List of contributors

	All people that contributes with some useful code or other help will be mentioned in this section, thanks to you all!

Hugues Landry - Matrix Math functions

